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ABSTRACT

This report presents the development of a mobile application named AutoGuard, which serves 
as a comprehensive anomaly detection system specifically designed for the automotive industry. 
AutoGuard utilizes advanced machine learning techniques, including statistical modeling, to analyze 
data collected from various sensors in a vehicle’s engine. The application not only detects potential 
faults but also provides real-time diagnostics by processing and visualizing the information in a user-
friendly format. Extensive testing and analysis demonstrate the system’s ability to enhance vehicle safety 
and maintenance efficiency, making it a valuable tool for both drivers and automotive professionals.
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INTRODUCTION
As vehicles become increasingly complex 

and their systems more interconnected, the 
need for robust anomaly detection solutions has 
never been more critical. Modern vehicles rely 
on a multitude of sensors and electronic control 
units (ECUs) that communicate continuously 
to ensure optimal performance and safety. This 
complexity, however, introduces new challenges 
in monitoring and maintaining vehicle health, 
necessitating advanced solutions capable of 
identifying anomalies before they escalate into 
serious issues.

Various algorithmic approaches have been 
explored to address this challenge, with machine 
learning and statistical methods at the forefront. 
These methods leverage vast amounts of data 

generated by vehicle systems to detect patterns 
and deviations indicative of potential problems. 
Among these, an anomaly detection model 
based on Principal Component Analysis (PCA) 
method proposed by Mei-Ling Shyu et al. has 
shown significant promise [1]. By analysing 
data extracted from the car’s engine and other 
critical components, this system can detect 
anomalies in real or near-real time, enabling 
proactive maintenance, error prevention, and 
improved safety measures. The implementation 
of such a system presents numerous benefits. 
Proactive maintenance can significantly reduce 
downtime and repair costs by addressing issues 
before they lead to major failures. Additionally, 
early detection of anomalies contributes to error 
prevention, ensuring that vehicles operate within 
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safe parameters and reducing the likelihood of 
accidents caused by mechanical faults. This, in 
turn, enhances overall vehicle safety, providing 
peace of mind to drivers and passengers alike. 
Auto Guard is an innovative application designed 
to democratize access to these advanced anomaly 
detection capabilities. It allows users, even 
those without a basic understanding of machine 
learning, to train and apply the anomaly detection 
model in real time. 

The user-friendly interface and intuitive 
design make it accessible to a broad audience, 
empowering vehicle owners and fleet managers to 
take control of vehicle health monitoring without 
requiring specialized technical knowledge. By 
making cutting-edge technology accessible to 
everyday users, Auto Guard bridges the gap 
between complex machine learning algorithms 
and practical, real-world applications, ensuring 
the vehicle’s safety and reliability.

EXPERIMENTAL 
Vehicle connection

The integration of the anomaly detection 
system with the vehicle is facilitated through 
an On-Board Diagnostics (OBD) device, a 
standardized interface that provides access to a 
wealth of real-time data from the car’s various 
sensors and electronic control units. The OBD 
device plugs into the vehicle’s OBD-II port, 
typically located under the dashboard, and 
serves as a bridge between the car’s internal 
systems and the anomaly detection application. 
By continuously streaming data such as engine 
performance metrics, fuel efficiency, emission 
levels, and diagnostic trouble codes, the OBD 
device enables comprehensive monitoring of 
the vehicle’s health. This seamless connection 
allows the anomaly detection model to analyze 
the incoming data in real or near-real time, 
identifying any deviations from normal patterns 
that might indicate potential issues.

To connect with the attached OBD device, 
the application uses the flutter_bluetooth_serial 

module, which allows easy communication even 
with devices supporting only older versions of 
Bluetooth, such as v2, v2.1 and v3 [2].

Communication between devices
The communication rules between the device 

and the application are defined by the SAE J1979 
standard [3]. SAE J1979 is a unified protocol 
that defines the methods of obtaining diagnostic 
data and the list of standard parameters that can 
be required by the device. Each parameter is 
addressed by a unique parameter ID (PID) defined 
in the SAE J1979 protocol. To obtain information 
about a specific parameter, the application sends 
the corresponding identification numbers to the 
OBD device. This is the so-called PID request. 
The device then accepts the request and sends 
back the desired information. 

After information is sent to the application, 
it is decoded from the hexadecimal number 
system and a certain formula is applied to the 
resulting result, which converts the resulting 
number into the desired unit of measurement 
(Fig. 1). On initial contact with a connected OBD 
device, the application resets the OBD settings 
to default and sends a request with PID of “00”. 
The request asks the device to send back all the 
available PIDs supported. The application then 
checks the available PIDs and maps them to the 
corresponding engine parameters.

In Fig. 1, an example is shown: We want to 
know the current value of the engine temperature. 
We send the ID of the parameter, which in this 
case is “05.”  The “01” header before the ID 
number indicates that this is a request (Fig. 
1a). The “4105” header indicates that this is a 
response to a request with ID “05.” “C9” is the 
hexadecimal number corresponding to the engine 
temperature (Fig. 1b). In the decimal system, 
this is the number 201. We apply the appropriate 
formula from the SAE J1979 protocol. Here, 
for conversion to degrees Celsius, it is A-40. 
We calculate 201 – 40 and find a temperature of 
161°C (Fig. 1c).
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Anomaly detection
Every single car is unique, with variations in 

design, performance, and usage that create a vast 
array of parameter values. This inherent diversity 
means there are no universally accepted reference 
values for all cars. Each parameter - whether it’s 
engine performance, fuel efficiency, or sensor 
readings - differs from one model to another. 
As a result, the common supervised machine 
learning (ML) approach, which relies on large, 
labeled datasets for training, is often impractical 
for anomaly detection in the automotive industry. 
The industry struggles with a scarcity of such 
comprehensive datasets, making supervised 
methods less effective.

In contrast, unsupervised machine learning 
offers a promising alternative. Unlike supervised 
ML, unsupervised ML does not require labeled 
datasets, allowing it to adapt to the unique 
characteristics and behaviors of individual 
vehicles. This approach provides more flexibility 
and is better suited to handle the individualism 
inherent in automotive data. By leveraging 
unsupervised ML, we can develop models that 
detect anomalies based on the specific operational 
patterns of each vehicle, leading to more accurate 
and reliable diagnostics and maintenance 
recommendations. 

For this reason, AutoGuard relies on Principal 
Component Analysis (PCA) for anomaly 

detection - а long-proven unsupervised ML 
algorithm.

Principal Component Analysis
PCA is a powerful statistical technique used 

for dimensionality reduction, feature extraction, 
and data visualization. It transforms the data into 
a new coordinate system such that the greatest 
variance by any projection of the data comes 
to lie on the first coordinate (the first principal 
component), the second greatest variance on 
the second coordinate, and so on. The principal 
components are obtained by calculating the 
eigenvalues and eigenvectors of the covariance 
matrix. The eigenvectors determine the direction 
of the principal components, while the eigenvalues 
determine their magnitude. This method is 
particularly useful for anomaly detection because 
it helps in identifying the principal structure of 
the data and highlights variations or outliers that 
do not conform to this structure.

Steps in performing PCA for anomaly detection
1. Data standardization: PCA is sensitive 

to the scale of the data. Therefore, it is crucial to 
standardize the data. Given a dataset X={x1,x2,…, 
xn} where each xi is an observation with p 
features, the standardization process transforms 
the data so that each feature has a mean of 0 
and a standard deviation of 1. This is done by 

Fig. 1. Converts the resulting number into the desired unit of measurement.
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subtracting the mean and dividing by the standard 
deviation feature-wise.

      
Here, zij represents the standardized value of 

the j-th feature for the i-th observation and μj, σj 
are the mean and standard deviation of the same 
feature across all observation.

2. Covariance matrix: Something that reflects 
the relationships between different features is 
required. For that reason, the covariance matrix 
Σ of all standardized observations Z is computed:

3. Eigen decomposition: Decompose the 
covariance matrix Σ to find eigenvalues and 
eigenvectors. Each eigenvector  represents 
a direction in the feature space and each 
eigenvalue λ indicates the variance captured by 
its corresponding eigenvector:

4. Eigenvalues and eigenvectors: Arrange 
the eigenvalues λ and their corresponding 
eigenvectors  in descending order of λ.

5. Principal components: Choose the top k 
eigenvectors based on the largest eigenvalues to 
form a matrix Vk with dimensions p × k . Each 
column of Vk is a principal component that is a 
linear combination of the original features.

6. Data transformation: Project the standar-
dized data 𝑍 onto the new feature space defined 
by the selected principal components:

Y = ZVk
Here, 𝑌 is the transformed dataset with 

reduced dimensions 𝑘. Each new feature in 
𝑌 is a principal component, which is a linear 
combination of the original standardized features.

7. Data reconstruction: Reconstruct the data 
from the lower-dimensional representation Y. 
This involves projecting Y back to the original 
feature space using the transpose of the principal 
components matrix  Vk

T:
Ẑ  = Y Vk

T

8. Revert standardization: Convert Ẑ back 

to the original scale of X:

This gives the reconstructed data  in the 
original feature space.

9. Reconstruction error: The reconstruction 
error is the difference between the original data 
X and the reconstructed data :

In practice, you often compute the norm of 
this error (such as the Euclidean distance) to get 
a single value that represents the magnitude of 
the error for each observation:

The reconstruction error provides a measure 
of how well the lower-dimensional subspace 
captures the original data. Data points with high 
reconstruction errors are considered anomalies, as 
they do not fit well within the subspace defined by 
the principal components. When reconstruction 
error exceeds given threshold the observation is 
flagged as anomaly.

Fig. 2 shows example case with artificially 
generated data where the red points are anomalies 
because they do not lie in the same plane as the 
green ones after sequentially applying PCA for 
dimensionality reduction and reconstruction. 
This is because they cannot be explained by only 
2 principal components i.e. in two-dimensional 
space, unlike the set of green dots.

Database
Sensor data and model weights need to 

be stored efficiently and securely for further 
processing and visualization. The strategy 
involves saving the model weights both locally 
on mobile devices and remotely on a server, while 
sensor data is exclusively stored in a remote 
database. This approach ensures that trained 
models and data are accessible by multiple 
devices simultaneously and remain available even 
after app reinstallation.
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The database is a relational database imple-
mented using PostgreSQL (Fig. 3). It consists of 
four interconnected tables, designed to efficiently 
store user information, sensor data collected from 
cars, model information, and anomalies detected 
by the models. The integration of TimescaleDB, a 
PostgreSQL extension specialized in time-series 
data, enhances the performance of the application 
by optimizing the storage and querying of 
sensor data [4]. By leveraging PostgreSQL 
and TimescaleDB, along with the postgres.dart 
connector for application-database communication, 
this setup ensures efficient, scalable, and reliable 
management of user information, sensor data, 
models, and anomalies [5].

Workflow Overview
This application comprises several key 

components, each performing distinct functions 
to ensure seamless interaction with the OBD (On-
Board Diagnostics) device, data management, 
and anomaly detection in a car’s engine. The 
primary parts of the application are as follows:

1. OBD Device Connection and Communi-
cation: This component establishes a secure 

connection between the application and the 
OBD device. It authenticates the OBD device to 
ensure its legitimacy, encodes information when 
sending data to the OBD device, and decodes 
information received from the OBD device for 
further processing.

2. Data Presentation and Storage: This 
section involves the collection of sensor data 
from the OBD device. It displays the sensor 
information to the user through interactive tables 
and charts, stores the collected data in a database 
for future reference and analysis, and prepares the 
stored data for potential use in training machine 
learning models.

3. Anomaly Detection Model:  This 
component utilizes the collected sensor data 
to train a machine learning model. The trained 
model is then implemented to detect anomalies in 
the car’s engine in real-time. Continuous updates 
are made to the model to improve its accuracy 
and reliability.

4. Anomaly Recording and User Notification: 
This section records each detected anomaly along 
with relevant information such as timestamp, 
sensor readings, and possible causes. It compiles 

Fig. 2. Identification of Anomalies Using PCA - Red Points Deviate from the Green Points Due to Insufficient 
Explanation by Two Principal Components [7].
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a detailed list of all registered anomalies and 
provides the user with access to this list, offering 
insights and recommendations for further action.

By integrating these components, the 
application ensures efficient communication with 
the OBD device, effective data storage, robust 
anomaly detection, and comprehensive reporting 
of engine issues.

Interface 
The mobile application interface is structured 

into three primary sections: the Home Page, the 
Sensor Data Page, and the Anomalies Page. This 
layout ensures intuitive navigation and efficient 
access to the application’s core features.

Home page
The Home page contains three main buttons, 

each capturing essential functionalities of the 
application.
•	 Settings Button: Located at the top right 

corner, this button opens the settings menu. 
The settings menu provides various options, 
including:

o Connecting to a Bluetooth device
o Managing notifications
o Changing the language
o Accessing help resources
o Customizing parameters that the model will 

monitor, including model size and threshold 
values for anomaly detection

Fig. 3.  Simplified view of the PostgreSQL database.
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The primary function of the settings menu 
is to offer users comprehensive control over the 
application’s configuration and behavior.
•	 Data Collection and Model Training Button: 

Positioned centrally, this button directs users 
to the menu for collecting data, as well 
as creating and training machine learning 
models.

•	 Inference Mode Button: Also centrally 
located, this button initiates the Inference 
mode, which employs a pre-trained model to 
perform real-time anomaly detection.
The design of the Home Page, that is shown 

on Fig. 4, ensures that users can quickly access 
core unctionalities and customize their experience 
according to their needs.

Live Data page
The live data page (Fig. 5) consists of table 

displaying information about the current read 

engine parameters and plot showing recent 
anomaly scores. The plot illustrates the current 
deviation from the training data, expressed as a 
percentage of anomalies. If the graph exceeds a 
certain limit (indicated by the red dashed line in 
the plot), an anomaly will be triggered..

Fault Log page
The Fault Log page (Fig.6) provides detailed 

information about recently detected anomalies, 
offering insights into the overall anomaly score 
and the variance explained by each parameter. 
The variance for each parameter is calculated 
using the explained variance ratio, defined by the 
following formula:

where λj is the j-th eigenvalue of the covariance 
matrix, corresponding to j-th parameter.

Fig. 4. The design of the AutoGuard app: (a) Home Page; (b) Settings, (c) Training menu.

a)     b)     c)
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RESULTS AND DISCUSSION
AutoGuard’s anomaly detection system 

was evaluated using a dataset generated by 
the ELM327-emulator library [6]. This library 
simulates sensor data from real vehicles and 
transmits it to the application via Bluetooth, 
enabling comprehensive testing and validation 
of the system under controlled conditions. The 
dataset included normal operational data and data 
with induced faults to test the system’s ability to 
detect anomalies. The following metrics were 
used to assess the model’s performance:
•	 Precision: The percentage of true positive 

detections among all detections made by the 
system.

•	 Recall: The percentage of true positives 
detected out of all actual anomalies.

•	 F1-Score: The harmonic mean of precision 
and recall, providing a single metric that 
balances both.

AutoGuard demonstrated a precision of 95 %, 
a recall of 92 %, and an F1-score of 93.5 %. These 
results indicate that the system effectively identifies 
anomalies with high accuracy, minimizing false 
positives and ensuring reliable fault detection. 
Table 1 compares the performance of AutoGuard’s 
PCA-based method with other common anomaly 
detection algorithms.

Real-World Testing
Tests were also conducted in real-world 

conditions using Opel Meriva B and Mazda 
CX-3 vehicles equipped with an ELM327 
OBD2 device. Given the budget constraints of 
this project, inducing real-time engine faults in 
vehicles for testing was deemed too costly. As a 
result, tests with intentionally damaged cars were 
not performed.

Despite these limitations, the application 
performed as expected in most scenarios. 

Fig. 5. Live data page. Fig. 6. Fault log page.



Timon Trifonov

73

However, two primary issues were identified:
1. Slower Data Collection: The data 

collection rate from the vehicles was occasionally 
slower than anticipated. This lag can affect the 
real-time diagnostic capability of the application, 
particularly in scenarios where immediate 
feedback is crucial.

2. Intermittent Submission of Invalid Data: 
There were instances where the vehicles’ sensors 
transmitted invalid data. This intermittent issue 
required additional filtering and validation 
processes within the application to ensure 
accuracy in anomaly detection.

These findings underscore the importance of 
further refining the data collection mechanisms 
and enhancing the robustness of the data validation 
processes. Addressing these issues will be critical 
in optimizing the application’s performance and 
reliability in real-world conditions.

User Experience
User feedback was collected through surveys 

and usability testing sessions. The following 
aspects were evaluated:
•	 Ease of Use: Users rated the application 

4.7 out of 5 for ease of use, highlighting 
the intuitive design and clear instructions 
provided within the app.

•	 Interface Design: The user interface received 
a rating of 4.8 out of 5, with users appreciating 
the clear visualizations and logical layout.
Overall Satisfaction: Overall satisfaction 

with the application was rated at 4.9 out of 5, 
indicating high acceptance and approval from 
both individual drivers and fleet managers.

CONCLUSIONS
AutoGuard offers a robust, user-friendly 

solution for real-time vehicle anomaly detection 
and diagnostics. By leveraging advanced machine 
learning techniques and providing a user-friendly 
interface, the application enhances vehicle safety, 
reduces maintenance costs, and democratizes 
access to cutting-edge technology. Continued 
development and enhancement of AutoGuard 
hold the promise of even greater benefits, making 
it an invaluable tool for drivers and automotive 
professionals alike.
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