
Timon Trifonov

65

Science, Engineering & Education, 9, (1), 2024, 65-74

Engine Fault Detection System (Autoguard)

Timon Trifonov*

PPMG „Akademik Ivan Tsenov”, 18 Demokracia Blvd., Vratsa, Bulgaria

Received 23 September 2024, Accepted 26 October 2024
DOI: 10.59957/see.v9.i1.2024.9

ABSTRACT

This report presents the development of a mobile application named AutoGuard, which serves
as a comprehensive anomaly detection system specifically designed for the automotive industry.
AutoGuard utilizes advanced machine learning techniques, including statistical modeling, to analyze
data collected from various sensors in a vehicle’s engine. The application not only detects potential
faults but also provides real-time diagnostics by processing and visualizing the information in a user-
friendly format. Extensive testing and analysis demonstrate the system’s ability to enhance vehicle safety
and maintenance efficiency, making it a valuable tool for both drivers and automotive professionals.

Keywords: Vehicle diagnostics, Fault detection system, Sensor data analysis, Machine learning,
Principal component analysis, Real-time monitoring.

*Correspondence to: Timon Trifonov, PPMG „Akademik Ivan Tsenov”, 18 Demokracia Blvd., Vratsa, Bulgaria, E-mail:
timonaki6566@gmail.com

INTRODUCTION
As vehicles become increasingly complex

and their systems more interconnected, the
need for robust anomaly detection solutions has
never been more critical. Modern vehicles rely
on a multitude of sensors and electronic control
units (ECUs) that communicate continuously
to ensure optimal performance and safety. This
complexity, however, introduces new challenges
in monitoring and maintaining vehicle health,
necessitating advanced solutions capable of
identifying anomalies before they escalate into
serious issues.

Various algorithmic approaches have been
explored to address this challenge, with machine
learning and statistical methods at the forefront.
These methods leverage vast amounts of data

generated by vehicle systems to detect patterns
and deviations indicative of potential problems.
Among these, an anomaly detection model
based on Principal Component Analysis (PCA)
method proposed by Mei-Ling Shyu et al. has
shown significant promise [1]. By analysing
data extracted from the car’s engine and other
critical components, this system can detect
anomalies in real or near-real time, enabling
proactive maintenance, error prevention, and
improved safety measures. The implementation
of such a system presents numerous benefits.
Proactive maintenance can significantly reduce
downtime and repair costs by addressing issues
before they lead to major failures. Additionally,
early detection of anomalies contributes to error
prevention, ensuring that vehicles operate within

Science, Engineering & Education, 9, (1), 2024

66

safe parameters and reducing the likelihood of
accidents caused by mechanical faults. This, in
turn, enhances overall vehicle safety, providing
peace of mind to drivers and passengers alike.
Auto Guard is an innovative application designed
to democratize access to these advanced anomaly
detection capabilities. It allows users, even
those without a basic understanding of machine
learning, to train and apply the anomaly detection
model in real time.

The user-friendly interface and intuitive
design make it accessible to a broad audience,
empowering vehicle owners and fleet managers to
take control of vehicle health monitoring without
requiring specialized technical knowledge. By
making cutting-edge technology accessible to
everyday users, Auto Guard bridges the gap
between complex machine learning algorithms
and practical, real-world applications, ensuring
the vehicle’s safety and reliability.

EXPERIMENTAL
Vehicle connection

The integration of the anomaly detection
system with the vehicle is facilitated through
an On-Board Diagnostics (OBD) device, a
standardized interface that provides access to a
wealth of real-time data from the car’s various
sensors and electronic control units. The OBD
device plugs into the vehicle’s OBD-II port,
typically located under the dashboard, and
serves as a bridge between the car’s internal
systems and the anomaly detection application.
By continuously streaming data such as engine
performance metrics, fuel efficiency, emission
levels, and diagnostic trouble codes, the OBD
device enables comprehensive monitoring of
the vehicle’s health. This seamless connection
allows the anomaly detection model to analyze
the incoming data in real or near-real time,
identifying any deviations from normal patterns
that might indicate potential issues.

To connect with the attached OBD device,
the application uses the flutter_bluetooth_serial

module, which allows easy communication even
with devices supporting only older versions of
Bluetooth, such as v2, v2.1 and v3 [2].

Communication between devices
The communication rules between the device

and the application are defined by the SAE J1979
standard [3]. SAE J1979 is a unified protocol
that defines the methods of obtaining diagnostic
data and the list of standard parameters that can
be required by the device. Each parameter is
addressed by a unique parameter ID (PID) defined
in the SAE J1979 protocol. To obtain information
about a specific parameter, the application sends
the corresponding identification numbers to the
OBD device. This is the so-called PID request.
The device then accepts the request and sends
back the desired information.

After information is sent to the application,
it is decoded from the hexadecimal number
system and a certain formula is applied to the
resulting result, which converts the resulting
number into the desired unit of measurement
(Fig. 1). On initial contact with a connected OBD
device, the application resets the OBD settings
to default and sends a request with PID of “00”.
The request asks the device to send back all the
available PIDs supported. The application then
checks the available PIDs and maps them to the
corresponding engine parameters.

In Fig. 1, an example is shown: We want to
know the current value of the engine temperature.
We send the ID of the parameter, which in this
case is “05.” The “01” header before the ID
number indicates that this is a request (Fig.
1a). The “4105” header indicates that this is a
response to a request with ID “05.” “C9” is the
hexadecimal number corresponding to the engine
temperature (Fig. 1b). In the decimal system,
this is the number 201. We apply the appropriate
formula from the SAE J1979 protocol. Here,
for conversion to degrees Celsius, it is A-40.
We calculate 201 – 40 and find a temperature of
161°C (Fig. 1c).

Timon Trifonov

67

Anomaly detection
Every single car is unique, with variations in

design, performance, and usage that create a vast
array of parameter values. This inherent diversity
means there are no universally accepted reference
values for all cars. Each parameter - whether it’s
engine performance, fuel efficiency, or sensor
readings - differs from one model to another.
As a result, the common supervised machine
learning (ML) approach, which relies on large,
labeled datasets for training, is often impractical
for anomaly detection in the automotive industry.
The industry struggles with a scarcity of such
comprehensive datasets, making supervised
methods less effective.

In contrast, unsupervised machine learning
offers a promising alternative. Unlike supervised
ML, unsupervised ML does not require labeled
datasets, allowing it to adapt to the unique
characteristics and behaviors of individual
vehicles. This approach provides more flexibility
and is better suited to handle the individualism
inherent in automotive data. By leveraging
unsupervised ML, we can develop models that
detect anomalies based on the specific operational
patterns of each vehicle, leading to more accurate
and reliable diagnostics and maintenance
recommendations.

For this reason, AutoGuard relies on Principal
Component Analysis (PCA) for anomaly

detection - а long-proven unsupervised ML
algorithm.

Principal Component Analysis
PCA is a powerful statistical technique used

for dimensionality reduction, feature extraction,
and data visualization. It transforms the data into
a new coordinate system such that the greatest
variance by any projection of the data comes
to lie on the first coordinate (the first principal
component), the second greatest variance on
the second coordinate, and so on. The principal
components are obtained by calculating the
eigenvalues and eigenvectors of the covariance
matrix. The eigenvectors determine the direction
of the principal components, while the eigenvalues
determine their magnitude. This method is
particularly useful for anomaly detection because
it helps in identifying the principal structure of
the data and highlights variations or outliers that
do not conform to this structure.

Steps in performing PCA for anomaly detection
1. Data standardization: PCA is sensitive

to the scale of the data. Therefore, it is crucial to
standardize the data. Given a dataset X={x1,x2,…,
xn} where each xi is an observation with p
features, the standardization process transforms
the data so that each feature has a mean of 0
and a standard deviation of 1. This is done by

Fig. 1. Converts the resulting number into the desired unit of measurement.

Science, Engineering & Education, 9, (1), 2024

68

subtracting the mean and dividing by the standard
deviation feature-wise.

Here, zij represents the standardized value of

the j-th feature for the i-th observation and μj, σj
are the mean and standard deviation of the same
feature across all observation.

2. Covariance matrix: Something that reflects
the relationships between different features is
required. For that reason, the covariance matrix
Σ of all standardized observations Z is computed:

3. Eigen decomposition: Decompose the
covariance matrix Σ to find eigenvalues and
eigenvectors. Each eigenvector represents
a direction in the feature space and each
eigenvalue λ indicates the variance captured by
its corresponding eigenvector:

4. Eigenvalues and eigenvectors: Arrange
the eigenvalues λ and their corresponding
eigenvectors in descending order of λ.

5. Principal components: Choose the top k
eigenvectors based on the largest eigenvalues to
form a matrix Vk with dimensions p × k . Each
column of Vk is a principal component that is a
linear combination of the original features.

6. Data transformation: Project the standar-
dized data 𝑍 onto the new feature space defined
by the selected principal components:

Y = ZVk
Here, 𝑌 is the transformed dataset with

reduced dimensions 𝑘. Each new feature in
𝑌 is a principal component, which is a linear
combination of the original standardized features.

7. Data reconstruction: Reconstruct the data
from the lower-dimensional representation Y.
This involves projecting Y back to the original
feature space using the transpose of the principal
components matrix Vk

T:
Ẑ = Y Vk

T

8. Revert standardization: Convert Ẑ back

to the original scale of X:

This gives the reconstructed data in the
original feature space.

9. Reconstruction error: The reconstruction
error is the difference between the original data
X and the reconstructed data :

In practice, you often compute the norm of
this error (such as the Euclidean distance) to get
a single value that represents the magnitude of
the error for each observation:

The reconstruction error provides a measure
of how well the lower-dimensional subspace
captures the original data. Data points with high
reconstruction errors are considered anomalies, as
they do not fit well within the subspace defined by
the principal components. When reconstruction
error exceeds given threshold the observation is
flagged as anomaly.

Fig. 2 shows example case with artificially
generated data where the red points are anomalies
because they do not lie in the same plane as the
green ones after sequentially applying PCA for
dimensionality reduction and reconstruction.
This is because they cannot be explained by only
2 principal components i.e. in two-dimensional
space, unlike the set of green dots.

Database
Sensor data and model weights need to

be stored efficiently and securely for further
processing and visualization. The strategy
involves saving the model weights both locally
on mobile devices and remotely on a server, while
sensor data is exclusively stored in a remote
database. This approach ensures that trained
models and data are accessible by multiple
devices simultaneously and remain available even
after app reinstallation.

Timon Trifonov

69

The database is a relational database imple-
mented using PostgreSQL (Fig. 3). It consists of
four interconnected tables, designed to efficiently
store user information, sensor data collected from
cars, model information, and anomalies detected
by the models. The integration of TimescaleDB, a
PostgreSQL extension specialized in time-series
data, enhances the performance of the application
by optimizing the storage and querying of
sensor data [4]. By leveraging PostgreSQL
and TimescaleDB, along with the postgres.dart
connector for application-database communication,
this setup ensures efficient, scalable, and reliable
management of user information, sensor data,
models, and anomalies [5].

Workflow Overview
This application comprises several key

components, each performing distinct functions
to ensure seamless interaction with the OBD (On-
Board Diagnostics) device, data management,
and anomaly detection in a car’s engine. The
primary parts of the application are as follows:

1. OBD Device Connection and Communi-
cation: This component establishes a secure

connection between the application and the
OBD device. It authenticates the OBD device to
ensure its legitimacy, encodes information when
sending data to the OBD device, and decodes
information received from the OBD device for
further processing.

2. Data Presentation and Storage: This
section involves the collection of sensor data
from the OBD device. It displays the sensor
information to the user through interactive tables
and charts, stores the collected data in a database
for future reference and analysis, and prepares the
stored data for potential use in training machine
learning models.

3. Anomaly Detection Model: This
component utilizes the collected sensor data
to train a machine learning model. The trained
model is then implemented to detect anomalies in
the car’s engine in real-time. Continuous updates
are made to the model to improve its accuracy
and reliability.

4. Anomaly Recording and User Notification:
This section records each detected anomaly along
with relevant information such as timestamp,
sensor readings, and possible causes. It compiles

Fig. 2. Identification of Anomalies Using PCA - Red Points Deviate from the Green Points Due to Insufficient
Explanation by Two Principal Components [7].

Science, Engineering & Education, 9, (1), 2024

70

a detailed list of all registered anomalies and
provides the user with access to this list, offering
insights and recommendations for further action.

By integrating these components, the
application ensures efficient communication with
the OBD device, effective data storage, robust
anomaly detection, and comprehensive reporting
of engine issues.

Interface
The mobile application interface is structured

into three primary sections: the Home Page, the
Sensor Data Page, and the Anomalies Page. This
layout ensures intuitive navigation and efficient
access to the application’s core features.

Home page
The Home page contains three main buttons,

each capturing essential functionalities of the
application.
•	 Settings Button: Located at the top right

corner, this button opens the settings menu.
The settings menu provides various options,
including:

o Connecting to a Bluetooth device
o Managing notifications
o Changing the language
o Accessing help resources
o Customizing parameters that the model will

monitor, including model size and threshold
values for anomaly detection

Fig. 3. Simplified view of the PostgreSQL database.

Timon Trifonov

71

The primary function of the settings menu
is to offer users comprehensive control over the
application’s configuration and behavior.
•	 Data Collection and Model Training Button:

Positioned centrally, this button directs users
to the menu for collecting data, as well
as creating and training machine learning
models.

•	 Inference Mode Button: Also centrally
located, this button initiates the Inference
mode, which employs a pre-trained model to
perform real-time anomaly detection.
The design of the Home Page, that is shown

on Fig. 4, ensures that users can quickly access
core unctionalities and customize their experience
according to their needs.

Live Data page
The live data page (Fig. 5) consists of table

displaying information about the current read

engine parameters and plot showing recent
anomaly scores. The plot illustrates the current
deviation from the training data, expressed as a
percentage of anomalies. If the graph exceeds a
certain limit (indicated by the red dashed line in
the plot), an anomaly will be triggered..

Fault Log page
The Fault Log page (Fig.6) provides detailed

information about recently detected anomalies,
offering insights into the overall anomaly score
and the variance explained by each parameter.
The variance for each parameter is calculated
using the explained variance ratio, defined by the
following formula:

where λj is the j-th eigenvalue of the covariance
matrix, corresponding to j-th parameter.

Fig. 4. The design of the AutoGuard app: (a) Home Page; (b) Settings, (c) Training menu.

a) b) c)

Science, Engineering & Education, 9, (1), 2024

72

RESULTS AND DISCUSSION
AutoGuard’s anomaly detection system

was evaluated using a dataset generated by
the ELM327-emulator library [6]. This library
simulates sensor data from real vehicles and
transmits it to the application via Bluetooth,
enabling comprehensive testing and validation
of the system under controlled conditions. The
dataset included normal operational data and data
with induced faults to test the system’s ability to
detect anomalies. The following metrics were
used to assess the model’s performance:
•	 Precision: The percentage of true positive

detections among all detections made by the
system.

•	 Recall: The percentage of true positives
detected out of all actual anomalies.

•	 F1-Score: The harmonic mean of precision
and recall, providing a single metric that
balances both.

AutoGuard demonstrated a precision of 95 %,
a recall of 92 %, and an F1-score of 93.5 %. These
results indicate that the system effectively identifies
anomalies with high accuracy, minimizing false
positives and ensuring reliable fault detection.
Table 1 compares the performance of AutoGuard’s
PCA-based method with other common anomaly
detection algorithms.

Real-World Testing
Tests were also conducted in real-world

conditions using Opel Meriva B and Mazda
CX-3 vehicles equipped with an ELM327
OBD2 device. Given the budget constraints of
this project, inducing real-time engine faults in
vehicles for testing was deemed too costly. As a
result, tests with intentionally damaged cars were
not performed.

Despite these limitations, the application
performed as expected in most scenarios.

Fig. 5. Live data page. Fig. 6. Fault log page.

Timon Trifonov

73

However, two primary issues were identified:
1. Slower Data Collection: The data

collection rate from the vehicles was occasionally
slower than anticipated. This lag can affect the
real-time diagnostic capability of the application,
particularly in scenarios where immediate
feedback is crucial.

2. Intermittent Submission of Invalid Data:
There were instances where the vehicles’ sensors
transmitted invalid data. This intermittent issue
required additional filtering and validation
processes within the application to ensure
accuracy in anomaly detection.

These findings underscore the importance of
further refining the data collection mechanisms
and enhancing the robustness of the data validation
processes. Addressing these issues will be critical
in optimizing the application’s performance and
reliability in real-world conditions.

User Experience
User feedback was collected through surveys

and usability testing sessions. The following
aspects were evaluated:
•	 Ease of Use: Users rated the application

4.7 out of 5 for ease of use, highlighting
the intuitive design and clear instructions
provided within the app.

•	 Interface Design: The user interface received
a rating of 4.8 out of 5, with users appreciating
the clear visualizations and logical layout.
Overall Satisfaction: Overall satisfaction

with the application was rated at 4.9 out of 5,
indicating high acceptance and approval from
both individual drivers and fleet managers.

CONCLUSIONS
AutoGuard offers a robust, user-friendly

solution for real-time vehicle anomaly detection
and diagnostics. By leveraging advanced machine
learning techniques and providing a user-friendly
interface, the application enhances vehicle safety,
reduces maintenance costs, and democratizes
access to cutting-edge technology. Continued
development and enhancement of AutoGuard
hold the promise of even greater benefits, making
it an invaluable tool for drivers and automotive
professionals alike.

REFERENCES
1. M.L. Shyu, S.C. Chen, K. Sarinnapakorn, L.

Chang, A Novel Anomaly Detection Scheme
Based on Principal Component Classifier,
Proceedings of the International Conference
on Data Mining, 2003.

2. 3daysapp.com.br. flutter_bluetooth_serial.
Version 0.2.2. Available at: https://pub.dev/
packages/flutter_bluetooth_serial, Accessed
on July 8, 2024.

3. OBD-II PIDs. Wikipedia. Available at:
https://en.wikipedia.org/wiki/OBD-II_PIDs,
Accessed on July 8, 2024.

4. Timescaledb. GitHub, Available at https://
github.com/timescale/timescaledb, Accessed

Algorithm Precision, % Recall, % F1-Score, %
AutoGuard (PCA) 95 92 93.5
Isolation Forest 90 88 89
One-Class SVM 85 83 84
K-Means Clustering 80 78 79

Table 1. Performance Comparison of AutoGuard’s PCA-Based Method with Other Anomaly Detection
Algorithms.

Science, Engineering & Education, 9, (1), 2024

74

on July 8, 2024.
5. agilord.com. postgres. Version 3.2.1. Available

at: https://pub.dev/packages/postgres
6. ELM327-emulator. GitHub. Available

at https://github.com/Ircama/ELM327-

emulator?tab=readme-ov-file. Accessed on
July 8, 2024.

7. Cyber Security Network Anomaly Detection
and Visualization Major Qualifying Project,
2017.

